
Workshop 4
Globalizing Knowledge: Leveraging Large Language

Models to Enhance Accessibility of ETDs

ETD 2024 Conference

Yinlin Chen1, William A. Ingram1, Edward A. Fox2

{ylchen, waingram, fox}@vt.edu

Virginia Tech: 1University Libraries, 2Dept. of Computer Science

mailto:ylchen@vt.edu

Today’s Topics

• Introduction

• Generative AI

• Large Language Models (LLMs)

• Retrieval-Augmented Generation (RAG)

• Demonstration

• Hands-On Exercise

• Discussion

• Q & A

Welcome & Introduction

• Introduce yourselves

– Name, role and institution

• Experience with AI and machine learning

• Experience with large language models

• What outcomes are you hoping for from this

workshop?

Learning Objectives

• By the end of this workshop, participants will be able to:
– Understand the potential of Large Language Models (LLMs) in

improving ETD accessibility and discoverability

– Grasp the fundamentals of Retrieval-Augmented Generation
(RAG) architecture

– Learn how to implement LLM-based solutions for translating and
standardizing ETD metadata and content

– Develop skills to create and query unified vector databases for
ETD collections

– Gain practical experience in integrating LLM technologies into
existing digital library systems

Workshop Overview

QueryUser

Generation

LL
M

Retrieval

Vector Store

chunking
Indexing
embedding

Corpus of ETDs

Input

Relevant chunks

Prompt template

User query

Output

Answer

Artificial Intelligence (AI) and Generative AI (GenAI)

A computer science field that involves the science and

engineering of making intelligent machines, especially

intelligent computer programs

A field that focuses on developing algorithms and

statistical models that enable computers to perform tasks

without explicit instructions, by identifying patterns and

making inferences from data.

A field that uses artificial neural networks, which mimic

the structure and function of the human brain, to learn

from large datasets and recognize complex patterns.

A field that focuses on creating algorithms capable of

generating new, human-like content, such as text,

images, and videos, based on patterns it learns from

existing data.

Generative Adversarial Network

• GANs are powerful machine learning
models capable of generating realistic
image, video, and voice outputs

• Applications:

– Transform photo editing

– Generate special effects for media and
entertainment

– Contribute to creative products from
industrial design to fine art

– Augment datasets in small data
problems in fields from autonomous
driving to manufacturing

Image source: (up) https://richzhang.github.io/colorization/ (down) DeepLearning.AI

https://richzhang.github.io/colorization/

Natural Language Processing (NLP), Natural Language

Understanding (NLU)

• Enables machines to understand, interpret, and generate
human language

• Facilitates human-computer interaction: e.g., Alexa, Siri,
Google Home, ChatGPT

• Empowers language tools: Assists in language acquisition
and translations

• Drives linguistic research: Analyzes datasets to uncover
linguistic patterns and trends

• Document classification, sentiment analysis, name entity
recognition, etc.

Word Embedding

• Use an efficient, dense representation in which similar
words have a similar encoding

https://projector.tensorflow.org/

Large Language Models (LLMs) and Large Multimodal Models (LMMs)

• GPT-4 (OpenAI)

• Llama (Meta AI)

• Gemini (Google)

• Claude (Anthropic)

• Grok-1 (xAI)

• Mistral (Mistral AI)

• Phi-3 (Microsoft)

• DALL-E (OpenAI)

• Many more……

LLM

LVM

LMM

Language Model

• A machine agent that understands and generates
human language

• A subset of Nature Language Processing (NLP)
focused on text generation and comprehension

• Uses statistical and machine learning techniques to
predict and produce language sequences

• Acts as a tool within NLP for various applications
like chatbots, translation services, and virtual
assistants

Large Language Models (LLMs)

• Predicts the probability of word sequences to generate
text that mimics human speech and writing

• Trained on extensive textual data, these models excel in
predicting the next word in a sentence based on the
preceding words.

• Enhance the functionality of applications like chatbots,
creative writing tools, translation software, and platforms
that analyze customer sentiment

• Examples of such models include OpenAI's GPT-3 and
GPT-4, as well as Google's BERT, among others.

NLP Tasks Where AI Models Excel

• Text Generation

• Text Summarization

• Sentiment Analysis

• Named Entity Recognition (NER)

• Question Answering

• Text Classification

• Paraphrasing

• Translation

Closed vs. Open Models

Image: https://twitter.com/maximelabonne/status/1779801605702836454

Source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

LMSYS Chatbot Arena Leaderboard

Source: https://chat.lmsys.org/?leaderboard

https://chat.lmsys.org/?leaderboard

LLM Capabilities and Features

• Agents

• Conversation

• Multilingual

• Multimodal

• Multipurpose

• Reasoning

• Understanding

Model Benchmark

Source: https://x.ai/

LLMs for Human-Computer Interaction

• Interpret and respond to natural language input.

• Engage in dynamic dialogues with users.

• Maintain context over multi-turn conversations.

• Provide personalized responses based on user
preferences.

• Offer real-time language translation and multilingual
support.

• Integrate with external systems for enhanced interactivity.

• Learn and adapt from user interactions to improve over
time.

LLM language support

• Different models have different language capabilities.

• Most major LLMs are trained predominantly on English data.

• Primary languages (like English, Spanish, French) typically
have strong support.

• Less common languages often have poor performance or no
support.

• Model-Specific Variations:
– GPT models show strong performance in widely-spoken languages.

– Open-source models may have more limited language support.

– Specialized models may focus on specific language families or
regions.

Chatbot Limitations

• Context Limitation: Can only consider a fixed amount of text at a time, potentially missing

broader context.

• Usage Limit: ChatGPT (GPT-4) allows 40 messages every 3 hours, while Copilot permits 30

requests per topic.

• Outdated Knowledge: Knowledge stops at the last training update, with no updates on newer

advancements or changes.

• Data Dependency: Model performance directly correlates to the quality and breadth of its

training data.

• Input Sensitive: Output quality heavily relies on the specificity and clarity of user prompts.

• Hallucinations: May confidently generate incorrect or misleading information.

Augmentation and Optimization Methods of LLMs

Image source: Retrieval-Augmented Generation for Large Language Models: A Survey

https://arxiv.org/pdf/2312.10997

Prompt engineering vs RAG vs Fine-tuning

Prompt
engineering

RAG Fine-tuning

• Adjusts a pre-trained language
model using a smaller,

specialized dataset
• Adapts the model to specific

tasks or domains

• Improves performance on the
target task

• More expensive than using a
pre-trained model

• Integrate external
knowledge bases with LLM

• Access real-time data not
included in the LLM's

training set

• Reduce the likelihood of
hallucinations

• Crafting prompts to elicit
desired responses from

a language model
• Requires understanding

of the model's behavior

and capabilities
• Often involves iterative

testing and refining of
prompts

Retrieval-Augmented

Generation (RAG)

Retrieval-Augmented Generation (RAG) Overview

QueryUser

Generation

LL
M

Retrieval

Vector Store

chunking
Indexing
embedding

Corpus of ETDs

Input

Relevant chunks

Prompt template

User query

Output

Answer

Retrieval-Augmented Generation (RAG)

• RAG is valuable for use cases requiring knowledge
beyond the model's pre-trained information.

• It enables semantic queries based on user input.

• Prompts guide both the retrieval process and the

generation of responses.

• By incorporating relevant information, RAG improves
response quality and reduces hallucinations.

Retrieval-Augmented Generation (RAG)

• Retrieval: The system retrieves relevant documents or
information from a large corpus or database based on a query.

• Augmentation: The retrieved information is then augmented
into the generative model’s input. This augmentation helps the
model avoid hallucinations and produce better-informed results.

• Generation: The generative model creates an output using both
its internal knowledge and the retrieved information, which
improves the quality of responses, especially for complex or
knowledge-intensive queries.

Key Skills for RAG Implementation

• Programming (Python)

• Prompt Engineering

• Retrieval Techniques (e.g., BM25, TF-IDF,

embedding-based retrieval, etc.)

• Natural Language Processing (NLP)

Retrieval-Augmented Generation (RAG) Overview

QueryUser

Generation

LL
M

Retrieval

Vector Store

chunking
Indexing
embedding

Corpus of ETDs

Input

Relevant chunks

Prompt template

User query

Output

Answer

Prompt Engineering

• A skill of crafting prompts to elicit the desired responses or results from
models.

• Crafting prompts aligned with the model's capabilities and limitations to
maximize effectiveness.

• Employing a result-oriented communication approach to lead to the
intended outcome.

• Incorporating contextual information within prompts to guide model
understanding.

• Including examples within prompts to guide response generation.

• Guiding formatting instructions to shape the output.

• Specifying personas to instruct language models on behavior or
perspective.

• Critically refining prompts based on model responses to optimize
relevance and accuracy iteratively.

Workflow in LLM-based Application

LLMsInput (Prompt) Output (Response)

Meaningful

input

Desired

output
Calculation

Prompt (Input)

• Serves as the input method for Language Models

• Describes the task to be performed by the model

• Supplies necessary context for generating relevant
responses

• May include formatting instructions for the output

• Specifies a role to instruct LLMs on behavior or

perspective

• May contain examples to guide response generation

Prompt Techniques

• Prompt-Based: User provides a "prompt" or initial input, and

the model generates a continuation.

• Zero-Shot: Model makes predictions about a task without

seeing examples of the task during training.

• Few-Shot: User provides a few examples of the desired task

within the prompt, and the model generalizes from these

examples to complete the task.

• Chain-of-Thought (CoT): Enables reasoning via

intermediate steps. When combined with few-shot prompting,

it improves results on tasks needing complex reasoning.

In Context Learning (ICL)

• Methods that enhance capabilities without adjusting (fine-tuning) the underlying model.

– Fine-tuning involves modifying the original model for specific tasks, which can be costly.

• Perform a new task from directly learning a small set of examples presented within the

prompt

• Utilizes off-the-shelf LLMs, thus ensuring broad applicability and ease of integration.

Image: https://ai.stanford.edu/blog/understanding-incontext/

https://ai.stanford.edu/blog/understanding-incontext/

Embeddings in Language Models

• Semantic Representation: for the model to understand language

nuances, context, and meaning.

• Contextual Understanding: for the model to grasp the dictionary

meaning of words and their specific meanings in different sentences

and scenarios.

• Generalization: for the model to apply learned information about one

word to similar words, thereby improving its ability to handle new or

related vocabulary.

• Transfer Learning: For the model to efficiently apply knowledge

gained from one task to another, enhancing the model’s versatility

across various applications and languages.

* https://www.theguardian.com/technology/ng-

interactive/2023/nov/01/how-ai-chatbots-like-chatgpt-or-bard-
work-visual-explainer

Prompt Example

Basic Prompt Techniques

• Zero-Shot
– Palatucci, M., Pomerleau, D., Hinton, G. E., & Mitchell, T. M. (2009). Zero-shot

learning with semantic output codes. Advances in neural information processing

systems, 22.

• One-Shot

• Few-Shot
– Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... &

Amodei, D. (2020). Language models are few-shot learners. Advances in neural

information processing systems, 33, 1877-1901.

Zero-Shot Prompting

• Direct Prompting: Issue a request without providing examples.

• Model-Dependent: Relies entirely on the pre-trained knowledge

of the model.

• Advantages: Immediate use, no requirement for example data.

• Limitations: You may receive unpredictable or less accurate

responses.

• Use Cases: Ideal for straightforward tasks or general queries.

Zero-Shot Examples

• "Given a title and a brief description, categorize this book into one of the
following genres: fiction, non-fiction, science, history, or biography.”

• "Provide a summary explanation suitable for an 8th grader about why the
Earth orbits the sun.”

• "List potential themes and activities for a summer reading program aimed
at teenagers, focusing on adventure and mystery genres.”

• "Suggest three books similar to 'Harry Potter' that are suitable for readers
aged 10-12, highlighting magical themes and strong character
development.”

• "Draft a proposal for a library workshop that teaches basic digital literacy
skills to senior citizens, including course objectives and expected
outcomes."

One-Shot Prompting

• Single Example Guidance: Uses one example to direct the model's

response.

• In-Context Learning: Utilizes the context from the provided example

and pre-trained knowledge.

• Advantages: Provides a balance between ease of use and accuracy

with just one example.

• Limitations: Depends on the quality and relevance of the single

example provided.

• Use Cases: For tasks needing responses in a particular style. Offers

more guidance than zero-shot but less than few-shot.

One-Shot Example

One-Shot Example (cont’d)

Few-Shot Prompting

• Few Example Guidance: Uses a few carefully selected

examples to guide the model's response.

• Contextual Enhancement: Leverages multiple examples to

improve the model’s understanding and response accuracy.

• Advantages: Increases reliability and precision over one-shot

and zero-shot prompting.

• Limitations: More preparation is required to create practical

examples.

• Use Cases: Effective for tasks that have diverse outcomes or

specific requirements that are difficult to describe.

Few-Shot Example

Few-Shot Example (cont’d)

Prompt Patterns

• A structured approach to guide user input, ensuring consistent, relevant, and

comprehensive responses from AI models.

• They offer clear and uniform solutions to predefined common problems.

• They are abstracted from various prompts and reusable, aiming to save time

when creating effective prompts.

• Adaptable and customizable for both domain-independent and domain-
specific applications.

• Allows users to create prompt templates, providing a foundation for efficiently

generating consistent and high-quality prompts.

Prompt Template

• Create a captivating LinkedIn post
to announce our upcoming event,
Spring Reading Festival, at
Downtown Public Library on June
15, 2024! Highlight the key
attractions, target audience, and
any special guests or activities
planned for the event from the text
below.

• ### event description ###

Prompt Prompt Template

Create a captivating LinkedIn post to announce our
upcoming [Event Name] at [Library Name] on [Date

of Event]. Highlight the key attractions, target
audience, and any special guests or activities

planned for the event from the following text

delimited by <>.

Event Name = [insert here]
Library Name = [insert here]

Date of Event = [insert here]

Text: <{event description}>
Prompt Patterns

• Provides a foundation for creating multiple prompts without the need to craft each one

individually, saving time and effort.

• Consistency: Ensures that prompts maintain a uniform structure and tone.

• Clarity: Offers direct guidelines on the necessary information to include for better

communication with the AI model.

• Reliability: Reduces the chance of missing critical information and minimizes errors.

• Efficiency: Saves time and effort by using templates to create prompts quickly and

effectively.

• Adaptability: Allows customization across various scenarios while maintaining a fundamental

structure.

• Scalability: Enables effective management of increasing prompts through template reuse.

Prompt Template

Template pattern

• Definition: Use a predefined structure or format to instruct an AI model to follow and respond

with a consistent output.

• Purpose: Ensure responses are organized and adhere to a specific format for a particular

intended purpose.

• Application: Ideal for tasks requiring structured responses, such as data interchange formats

or any output needing a consistent format.

• Guidelines: Define the structure clearly, using headings and subheadings to organize content.

Include placeholders for variable content. Make the template clear and intuitive for reuse.

• Notes: This pattern filters the AI model's responses, which may eliminate some useful

information.

Template pattern Prompt Example

• Perform the following actions:
1. Parse the following text delimited by <>.

2. Extract the "product_name" and "price" fields from the input text.

3. Output a new JSON array containing only these fields for each
entry.

4. Calculate the average price of the products and include it in the
JSON output.

• Use the following format:

• Text: <text to parse>

• Output JSON: { "product_list": [{ "product_name":
"", "price": }], "average_price": }

LLM has Context window

• Models have a maximum number of tokens they can process at
once, called context window or token limit.

• The context window includes the input prompt and output
response.

• Exceeding the token limit results in the loss of the earliest
conversation details.

• Larger context windows improve the model's ability to
comprehend lengthy inputs but are more computationally
expensive.

• Prompt engineering is one strategy to include necessary
information and optimize content to achieve the desired response
without exceeding the token limit.

Tokenization

Retrieval-Augmented Generation (RAG)

QueryUser

Generation

LL
M

Retrieval

Vector Store

chunking
Indexing
embedding

Corpus of text

Input

Relevant chunks

Prompt template

User query

Output

Answer

Schematic representation of the RAG process flow

Image source : https://www.griddynamics.com/blog/retrieval-augmented-generation-llm

https://www.griddynamics.com/blog/retrieval-augmented-generation-llm

Chunking

Image source: https://chunkviz.up.railway.app/

https://chunkviz.up.railway.app/

Tokenization

Embedding

Efficient Prompt Engineering
for Librarians

Embedding

model

(e.g. text-embedding-3-small)

[-0.021229176, 0.0014725844, -
0.0215806, -0.002835349, 0.009168959,

0.026947796, -0.019695692,

0.040956814, -0.037570372,

0.0042530233, 0.044151574, -

0.045333635, -0.00263368, -
0.026867926, 0.03808153, 0.008078747,

0.030861376, 0.0009085097, 0.0338325,

-0.0048760017, 0.017187806,

0.0027954145, 0.007835147,

0.034056135, -0.021356966,
0.027235324, 0.006082023, …….

 0.0011800643, -0.06066848,

0.005479012, 0.021820206, -

0.024679516, -0.04635596, 0.03530209,

0.0046004537, -0.034631193, -
0.032410834, -0.02431212, -

0.024839254, 0.018465709, -

0.0089772735, 0.001333812,

0.0059063113, -0.0117886625,

0.0041172463, -0.024615621,
0.037794005, 0.0015953829, -

0.06117964, -0.0070604184, -

0.018992845]

A 1536-dimensional vector

Indexing

Image source: https://python.langchain.com/v0.1/docs/modules/data_connection/vectorstores/

https://python.langchain.com/v0.1/docs/modules/data_connection/vectorstores/

RAG Code Example

Source : https://python.langchain.com/v0.1/docs/use_cases/question_answering/quickstart/

https://python.langchain.com/v0.1/docs/use_cases/question_answering/quickstart/

RAG Code Example
Source : https://python.langchain.com/v0.1/docs/use_cases/question_answering/quickstart/

https://python.langchain.com/v0.1/docs/use_cases/question_answering/quickstart/

RAG Evaluation

• ROUGE (Recall-Oriented Understudy for Gisting
Evaluation)

• Measures the overlap between generated and
reference responses

• Evaluates using n-grams, word sequences, and word
pairs

• Considers both precision and recall aspects

• Evaluating the generation component of RAG
systems by comparing the output text against
reference answers.

Demonstration and

Hands-On Exercise

Ways to Interact with LLM/LMM models

• Web/Application UI

• OpenAI / Google Gemini / Anthropic APIs

• Open-source Models

• GitHub Models

• Hugging Face Models

• Anaconda AI Navigator

• Etc.

Web/Application UI

Interact with Model via Program

OpenAI API

• A cloud-based service for accessing OpenAI's GPT
(Generative Pre-trained Transformer) models
– GPT-4 and GPT-3.5: Models can understand as well as

generate natural language or code

– DALL·E: A model that can generate and edit images given
a natural language prompt

– Whisper: A model that can convert audio into text

– Embeddings: A set of models that can convert text into a
numerical form

– Moderation: A fine-tuned model that can detect whether
text may be sensitive or unsafe

Development Environment

Image source: https://www.anaconda.com/products/ai-navigator

https://www.anaconda.com/products/ai-navigator

Use

the

Model

API

Use the Model API (Output)

Use the Model API

• System: Instruction prompt

to the system or prompt

template

• User: User query or user

input

• Assistant: Assistant

response

 LangChain

• Framework for developing language model-powered
applications

• Enables context-aware and reasoning applications.

• Modular components and off-the-shelf chains for
ease of use and customization.

• Standard, extendable modules: Model I/O,
Retrieval, Chains, Agents, Memory, Callbacks.

• Building applications with LLMs through
composability.

https://www.langchain.com/

https://www.langchain.com/

Implementation Consideration on ETDs

• Document Processing Considerations
– Handle multi-level document structure (chapters, sections,

appendices, references)

– Process mixed content types (text, equations, figures,
tables, citations)

– Manage large PDF files (100+ pages) efficiently during
ingestion

– Extract and maintain hierarchical relationships between
sections

– Preserve academic citation networks and reference
mappings

Implementation Consideration on ETDs

• Chunking Strategies

– Implement semantic chunking based on section

boundaries

– Balance chunk size for context retention vs. token limits

– Maintain cross-references between related chunks

– Consider hierarchical chunking (chapter → section →

subsection)

– Preserve metadata for each chunk (figure references,

citations)

Implementation Consideration on ETDs

• Retrieval Optimization
– Index by semantic sections rather than arbitrary splits

– Implement citation-aware retrieval for reference
validation

– Use hybrid retrieval combining semantic and keyword
search

– Create section-specific embeddings for targeted
queries

– Maintain context windows across related chunks

Variant RAGs Image source: https://www.anthropic.com/news/contextual-retrieval

https://www.anthropic.com/news/contextual-retrieval

Variant RAGs Image source: https://www.anthropic.com/news/contextual-retrieval

https://www.anthropic.com/news/contextual-retrieval

Fine-tuning

Starling-7B: Increasing LLM
Helpfulness & Harmlessness
with RLAIF

https://starling.cs.berkeley.edu/

https://starling.cs.berkeley.edu/

Resources

• A Simple Guide to Retrieval Augmented Generation
[eBook]

• AI-Powered Search [eBook]

• LangChain: A software framework that facilitates the
integration of large language models into applications

• Anaconda AI Navigator: Interacting with open-source
LLMs directly on your computer

• PaperQA2: a RAG for answering questions from
scientific documents with citations

• Pyserini: a Python toolkit for reproducible information
retrieval research

https://www.manning.com/books/a-simple-guide-to-retrieval-augmented-generation
https://www.manning.com/books/ai-powered-search

Discussion

Discussion

• Research and applications of Large Language

Models (LLMs) in ETDs

• Improving ETD accessibility using LLMs

• Enhancing ETD discoverability through LLMs

• Joint discussion and sharing ideas

Future Workshops

• Call for RAG Implementation in ETDs Workshop

– RAG Architecture and Design

– Advanced RAG Research

– Specialized RAG Topics

Q & A

 Thank You!

	Default Section
	Slide 1: Workshop 4 Globalizing Knowledge: Leveraging Large Language Models to Enhance Accessibility of ETDs
	Slide 2: Today’s Topics
	Slide 3: Welcome & Introduction
	Slide 4: Learning Objectives
	Slide 5: Workshop Overview
	Slide 6: Artificial Intelligence (AI) and Generative AI (GenAI)
	Slide 7: Generative Adversarial Network
	Slide 8: Natural Language Processing (NLP), Natural Language Understanding (NLU)
	Slide 9: Word Embedding
	Slide 10: Large Language Models (LLMs) and Large Multimodal Models (LMMs)
	Slide 11: Language Model
	Slide 12: Large Language Models (LLMs)
	Slide 13: NLP Tasks Where AI Models Excel
	Slide 14: Closed vs. Open Models
	Slide 15
	Slide 16
	Slide 17: LMSYS Chatbot Arena Leaderboard
	Slide 18: LLM Capabilities and Features
	Slide 19: Model Benchmark
	Slide 20: LLMs for Human-Computer Interaction
	Slide 21: LLM language support
	Slide 22: Chatbot Limitations
	Slide 23: Augmentation and Optimization Methods of LLMs
	Slide 24: Prompt engineering vs RAG vs Fine-tuning
	Slide 25
	Slide 26: Retrieval-Augmented Generation (RAG) Overview
	Slide 27: Retrieval-Augmented Generation (RAG)
	Slide 28: Retrieval-Augmented Generation (RAG)
	Slide 29: Key Skills for RAG Implementation
	Slide 30: Retrieval-Augmented Generation (RAG) Overview
	Slide 31: Prompt Engineering
	Slide 34: Workflow in LLM-based Application
	Slide 35: Prompt (Input)
	Slide 36: Prompt Techniques
	Slide 37: In Context Learning (ICL)
	Slide 38: Embeddings in Language Models
	Slide 39
	Slide 40: Prompt Example
	Slide 41: Basic Prompt Techniques
	Slide 42: Zero-Shot Prompting
	Slide 43: Zero-Shot Examples
	Slide 44: One-Shot Prompting
	Slide 45: One-Shot Example
	Slide 46: One-Shot Example (cont’d)
	Slide 47: Few-Shot Prompting
	Slide 48: Few-Shot Example
	Slide 49: Few-Shot Example (cont’d)
	Slide 50: Prompt Patterns
	Slide 51: Prompt Template
	Slide 52: Prompt Template
	Slide 53: Template pattern
	Slide 54: Template pattern Prompt Example
	Slide 55
	Slide 56: LLM has Context window
	Slide 57: Tokenization
	Slide 58: Retrieval-Augmented Generation (RAG)
	Slide 59: Schematic representation of the RAG process flow
	Slide 60: Chunking
	Slide 61: Tokenization
	Slide 62: Embedding
	Slide 63: Indexing
	Slide 64: RAG Code Example
	Slide 65: RAG Code Example
	Slide 66: RAG Evaluation
	Slide 67
	Slide 68: Ways to Interact with LLM/LMM models
	Slide 69: Web/Application UI
	Slide 70: Interact with Model via Program
	Slide 71: OpenAI API
	Slide 72
	Slide 73: Development Environment
	Slide 74: Use the Model API
	Slide 75: Use the Model API (Output)
	Slide 76: Use the Model API
	Slide 77: 🦜️🔗 LangChain
	Slide 78: Implementation Consideration on ETDs
	Slide 79: Implementation Consideration on ETDs
	Slide 80: Implementation Consideration on ETDs
	Slide 81: Variant RAGs
	Slide 82: Variant RAGs
	Slide 83: Fine-tuning
	Slide 84: Resources
	Slide 85
	Slide 86: Discussion
	Slide 87: Future Workshops
	Slide 88: Q & A

